MATH 473/576 Introductory Real Analysis (4 units)

Course Outline

Sections	Topics	# of weeks
5-8	Foundations: Limits; continuous functions; fundamental theorems; least upper bounds; uniform continuity.	3.0
9–14	Derivatives and Integrals: Derivatives and differentiation; significance of the derivative; convexity and concavity; inverse functions; parametric curves; Riemann sums and integrals; the Fundamental Theorem of Calculus.	5.0
22–24	Infinite Sequences and Infinite Series: Infinite sequences; infinite series; uniform convergence; power series.	5.0
	Tests	1.0

Textbook: Calculus, 4th edition, by M. Spivak.

Adopted: Fall 2006; Revised: Fall 2010, Fall 2013.

OR

Sections	Topics	# of weeks
2.1–2.5	The Real Numbers: Algebraic properties; order and absolute value; completeness and least upper bounds. (Note: This material is mostly a review from Math 267.)	1.0
3.1–3.7	Sequences and Series: Sequences and their limits; limit theorems; monotone sequences; the Bolzano–Weierstrass theorem; Cauchy's criterion; introduction to infinite series.	2.0
4.1-4.3	Limits: Limits of functions; limit theorems.	1.0
5.1–5.4, 5.6	Continuous Functions: Continuous functions and their basic properties; continuous functions on intervals; uniform continuity; monotone and inverse functions.	2.0
6.1–6.4	Differentiation: Derivatives; the Mean-Value Theorem; l'Hospital's rules; Taylor's theorem.	2.0
7.1–7.3	The Riemann Integral: Riemann sums and basic proper- ties of the Riemann integral; classes of Riemann integrable functions; the Fundamental Theorem of Calculus.	2.5
8.1-8.2	Sequences of Functions: Pointwise and uniform convergence; interchange of limits.	1.0
9.1–9.4	Infinite Series: Absolute and conditional convergence; tests for convergence; series of functions; power series.	1.5
	Tests	1.0

Textbook: Introduction to Real Analysis, 4th edition, by R.G. Bartle and D.R. Sherbert.