MATH 379/579 Fourier Analysis with Applications (3 units)

Course Outline

Sections	Topics	# of weeks
0.1–0.5	Preliminaries: Inner product spaces; the spaces \mathbb{C}^n , ℓ^2 , and $L_2[a, b]$; types of convergence of functions; orthogonality and orthogonal projections.	2.0
1.1–1.3	Fourier Series: Fourier cosine and sine expansions; complex form; the Riemann–Lebesgue lemma; convergence of Fourier series; Parseval's identity and Bessel's inequality; applications to PDEs.	5.0
2.1–2.5	The Fourier Transform: Definition and basic proper- ties; Fourier inversion; Plancherel's theorem; the Shannon– Whittaker sampling theorem; the Uncertainty Principle. Sec- tions 2.3–2.5 are covered as time permits.	2.5
4.1–4.2	The Haar Wavelet: The Haar scaling function and its basic properties; the Haar wavelet.	1.0
5.1–5.2	Multiresolution Analysis: Definition; the scaling relation; the associated wavelet and wavelet spaces; decomposition and reconstruction formulas; implementation.	2.5
	Tests	1.0

Textbook: *A First Course in Wavelets and Fourier Analysis*, 2nd edition. By A. Boggess and F.J. Narcowich.

Adopted: Spring 2013.